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Principle of Event Symmetry 
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To accommodate topology change, the symmetry of space-time must be extended 
from the diffeomorphism group of a manifold to the symmetric group acting on 
the discrete set of space-time events. This is the principle of event-symmetric 
space-time. I investigate a number of physical toy models with this symmetry 
to gain some insight into the likely nature of event-symmetric space-time, In the 
more advanced models the symmetric group is embedded into larger structures 
such as matrix groups which provide scope to unify space-time symmetry with 
the internal gauge symmetries of particle physics, I also suggest that the symmetric 
group of space-time could be related to the symmetric group acting to exchange 
identical particles, implying a unification of space-time and matter. I end with a 
definition of a new type of loop symmetry which is important in event-symmetric 
superstring theory. 

1. INTRODUCTION 

One of the greatest challenges facing theoretical physics is to understand 
the structure of space-time at the Planck scale. At such small distances 
quantum theory and general relativity combine and space-time is replaced 
by some unknown pregeometry. In the 1960s and 1970s some basic ideas 
about the small-scale structure of space-time were presented by Finkelstein, 
Penrose, and Wheeler, but otherwise very little progress was made. In the 
last decade a growing number of speculative pregeometry models have been 
studied. At the same time developments in quantum gravity such as string 
theory and canonical quantum gravity have thrown much light on the micro- 
scopic nature of space-time. A bibliography of references on the small scale 
structure on space-time can be found in my review (Gibbs, 1995c). 

One clear message from theories of quantum gravity is that there is a 
physical minimum distance beyond which the Heisenberg uncertainty princi- 
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pie inhibits measurement (Garay, 1994). There are also suggestions resulting 
from studies of the thermodynamics of black holes that the number of physical 
degrees of freedom in a volume of space must have a strict finite limit 
(Bekenstein, 1994). These observations lend credibility to models of discrete 
space-time, but it is important not to forget the importance of topology. A 
good pregeometry model may have a dual nature with properties of both 
discrete and continuous space-time. 

The theory of event-symmetric space-time is a discrete approach to 
quantum gravity in which the exact nature of space-time will only become 
apparent in the solution. Even the number of space-time dimensions is not 
set by the formulation and must be a dynamic result. In relation to other 
pregeometry theories, event-symmetric space-time is closest in spirit to quan- 
tum relativity (Finkelstein and Gibbs, 1993) and discrete differential manifolds 
(Dimakis et al., 1995). 

Principles of symmetry are of primary importance in both general relativ- 
ity and quantum mechanics and might be expected to be of at least as much 
importance in a combined theory of quantum gravity. However, very few 
pregeometry models use symmetry in a useful way. Wheeler suggests that 
symmetry conceals the pregeometric structure and should not be given any 
importance (Wheeler, 1994). My own belief is that the symmetry so far 
discovered in nature is just the tip of a very large iceberg. In the event- 
symmetric approach to pregeometry I take symmetry to be an overriding 
principle no matter how bizarre the conclusions. Specifically, I argue that 
space-time symmetry must be enlarged to include invariance under the sym- 
metric group acting on space-time as a discrete set of events. By enlarging 
the symmetry still further it may be possible to unify space-time symmetry 
with internal gauge symmetry. 

At the present time the best candidate to unify all known forces is 
superstring theory. The aspects of superstring which are least well understood 
are its symmetry and geometric foundation. Event-symmetric space-time may 
be the solution to solving these problems and already there are some interest- 
ing models of event-symmetric string theory which will be described in 
this paper. 

Before I go into the details of the theory it may be interesting to recall 
some of the different philosophical ideas about space-time which have been 
disputed. As observers we perceive events in our physical environment 
through our senses. In our minds we possess a model of space and time in 
which we place these events. Before the 20th century a number of philoso- 
phers, notably Mach, suggested that since we do not perceive space and time 
directly, they should not be regarded as existing absolutely in their own right, 
but only as a result of relations between material objects. On this basis Mach 
stated his principle that inertia is determined by all the mass of the universe 
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and is therefore relative to the distant stars. This is a physically testable 
prediction which is known to be highly accurate, 

Many mathematicians, however, took the opposite viewpoint. Space is 
studied as a geometric object existing independently of matter. Riemann went 
further, suggesting that matter itself could be just a manifestation of local 
curvature of space. 

Einstein was impressed with Mach's philosophy and hoped that Mach's 
principle would follow as a consequence of general relativity. Paradoxically 
he found that Riemann's mathematics of curved geometry was just what he 
needed to formulate the theory. He showed that the gravitational force was 
a result of geometrodynamics. The beauty of the result was so persuasive 
that physicists turned away from the earlier philosophy of Mach toward 
theories in which matter and the other forces might be understood as a 
consequence of geometry. Kaluza-Klein theories are the best known of this 
type, but there are also theories in which particles are thought of as purely 
geometrical objects such as microscopic black holes or wormholes. 

In the light of this it is interesting to look forward to what the event- 
symmetric physics is going to tell us about the relationship between matter 
and space-time. The principle is a direct extension of covariance in general 
relativity with invariance under diffeomorphisms being extended to invariance 
under any one-to-one mapping. In some of the event-symmetric models I 
will propose, it is natural to identify the symmetric group acting on space- 
time with the symmetry under exchange of identical particles. This strongly 
suggests a return to a Machian point of view in which space-time is seen as 
a consequence of relationships between matter. 

Development of the theory of event-symmetric space-time has been my 
interest for the last five years and has previously been reported in e-prints 
available on the internet (Gibbs, 1994a, 1995b). In this paper I include and 
extend the results of those papers. 

2. EVENT-SYMMETRIC SPACE-TIME 

General relativity is based on the principle that physics is invariant under 
any differentiable change of space-time coordinates. To be more precise, 
general relativity is defined on a manifold M and is invariant under the group 
of diffeomorphisms on the manifold diff(M). Symmetry principles of this 
type have become the cornerstone of theoretical physics this century. The 
recipe for using symmetry in theory cooking goes something like this: 

1. Choose a group which you think corresponds to a symmetry of 
physics. 

2. Choose a representation of the group which could correspond to 
the physical variables. 
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3. Choose an invariant function of the representation to define the 
action principle for your theory. 

When symmetry is combined with other requirements such as locality and 
renormalizability in quantum field theory, the constraints on choice are so 
high that it becomes possible to construct theories with a minimum of empiri- 
cal input. The idea is so compelling that we might believe the laws of physics 
are based on some fundamental symmetry principle defined by some universal 
symmetry group Gu. All known symmetries of physics would be derived 
from the universal group as residual symmetry left over after spontaneous 
symmetry breaking. If only we knew what Gu was we would be just a couple 
of steps away from knowing the laws of physics. 

Let us suppose for the moment that this is really true. What could we 
say about the group Gu? It must contain a subgroup isomorphic to the 
symmetry of general relativity, 

diff(M) C Gu 

and another isomorphic to the gauge group, 

G M C Gu 

This immediately raises a question: Is the topology of the manifold M deter- 
mined by the universal group? The diffeomorphism groups on two different 
manifolds are not isomorphic if they have different topologies. For aesthetic 
reasons we might prefer that the topology of the space-time manifold is not 
written into the laws of physics since it would fix the global properties of 
the universe. There are also arguments from microscopic physics for the 
same conclusion. Wheeler first pointed out that in a model of quantum 
geometrodynamics the fluctuations of space-time at the Planck scale would 
be so great that space-time would be reduced to a foam of virtual wormholes 
(Wheeler, 1957). The topology of space must be continually changing and 
quantum gravity must include a sum over all possible space-time topologies. 
The arguments in favor of topology change have only become stronger with 
time (Balachandran et aL, 1995). 

This forces us to conclude that the universal group must contain the 
diffeomorphism groups for an infinite number of topologically different mani- 
folds. The puzzle that this presents was discussed by Witten when trying to 
reason what would be the universal group of string theory (Witten, 1993). 
We must find a group that contains all the allowed diffeomorphism groups. 
One possibility might be to simply take the direct product of all the groups, 
but this would define a universe made up of many independent manifolds, 
which is not what we would want. 

Witten's puzzle seems to epitomize the incompatibility between general 
relativity and quantum mechanics. There may be many ways of resolving it, 
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including the possibility of giving up the fundamental role of symmetry or 
discarding topology change. In this paper we explore another simple but 
radical solution. The diffeomorphism group on a manifold is a subgroup of 
all one-to-one mappings on the manifold, otherwise known as the symmetric 
group on the set of  events in the manifold. The symmetric group is independent 
of the topological structure of the manifold and is therefore isomorphic to 
the symmetric group on any other manifold or any other set which has the 
same cardinality, 

diff(M) C S(M) ~ S(Nj) 

It follows that the diffeomorphism group for any manifold whatsoever is 
isomorphic to a subgroup of the symmetric group and therefore, if the univer- 
sal group contains the symmetric group acting on space-time events, then 
topology change is possible. This simple observation leads to the follow- 
ing definition. 

Definition. A model of space-time is said to be event-symmetric if it is 
invariant under the symmetric group acting on space-time events, or a larger 
group which has a homomorphism onto the symmetric group, 

S(E) C Gu/K 

To satisfy this definition it is not necessary to have an uncountable 
number of space-time events. A model with the symmetric group S(,No) would 
be event-symmetric. It is convenient to regularize the number of space-time 
events to a finite number N and take the large-N limit while scaling some 
of the parameters of the model as functions of N. This approach is valid 
since a manifold with an uncountable number of events can be densely 
covered with a countable number of events. 

An important example of a group with a homomorphism onto the sym- 
metric group is the braided group B(N). The universal symmetry Gv is likely 
to be a larger structure such as a matrix group like U(N) which contains the 
symmetric group S(N) represented by permutation matrices. Corresponding 
symmetry structures for the braid group would be the quantum matrix groups. 
As we shall see, the principle of event-symmetric space-time becomes more 
and more interesting as we seek to extend the symmetric group to the most 
general symmetry possible. 

3. S IMPLE MODELS 

In event-symmetric space-time there is no continuous time parameter. 
This should be an advantage in physical situations where time might break 
down, i.e., at singularities. On the other hand, it makes it unclear how to 
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define quantum models. The simplest way to proceed is to start from a path 
integral approach and generalize. 

The construction of the most general quantum system needed for our 
purposes is as follows: 

• Define a system of  field variables F = (q~ . . . . .  q~,,). Each one may 
be real, discrete, or a Grassmann anticommuting variable. 

• Define an action functional on the field variables S(F). 
• Calculate the partition function 

Z = f e is d'k  9 

• Define observables as functionals on the variables Oi(F) .  

• Calculate expectation values of  the observables. 

f Oe iS d"q~ 

(0) - " 

Z 

• Finally, it may be necessary to take a limit of  some sequence of such 
models in which n ~ ~. 

For such a model to make sense as a quantum system it is necessary 
that the action functional S is real and the integral well defined. It is also of  
interest to study models where S is imaginary. In that case we can write 

S = if3E 

Z = e -f~E 

1 
f3 k T  

so such a model can be interpreted as a classical statistical physics system 
at a temperature 12. It is common practice in numerical lattice theory to replace 
a quantum system with a statistical one obtained by performing a Wick 
rotation from the Lorentzian sector to the Euclidean sector. In lattice quantum 
gravity it is also possible to replace Einstein gravity by a statistical model 
which can be regarded as gravity in a Riemannian sector. It is not yet known 
how valid such a transformation is, but it is certainly worth studying. 

There are also both quantum and statistical models of  event-symmetric 
systems. Ultimately we must be interested in quantum systems, but it is 
possible to gain much insight into the nature of  event-symmetric space-time 
by studying toy models, most of which are statistical in nature. 
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To illustrate this we shall solve the event-symmetric Ising model. This 
consists of a large number N of ferromagnets represented by spin variables 

sa = -+1, a =  1 . . . . .  N 

Each spin interacts equally with every other spin according to the energy 
function 

E =  ~ S,,Sb 
a<b 

This has S(N) invariance since it is symmetric under spin permutations. It 
has an additional Z2 invariance under global spin reversal. Solving the partition 
function of  this model is not very difficult, 

Z = ~ e -13E 
{sa~ 

Write this as a sum over K negative spins and N - K positive spins, 

Z =  ~ K e x p  ( N -  I ) - 2 K ( N - K )  
K=0 

In the large-N limit this can be approximated (up to a constant factor indepen- 
dent of N) by an integral over a variable 

p = KIN 

i x' 
Z o: dp exp(Nl~[½ - 2p(1 - p) - p In(p) - (1 - p) In(1 - p)}) 

p=0 

In this equation we have scaled [3 as a function of N such that 

"~ = 13/N 

is kept constant as N --~ ~. 
The function in the exponential has one minimum at p = 1/2 for 13 < 

1 and two minima for J3 > 1. The large-N limit forces the system into these 
minima, so there is a phase transition at 13 = 1 with the Z2 symmetry 
broken above. 

Also of some interest is the gauged Ising model in which the spin 
variables are placed on event links, 

S.h = +--1, a < b 

The energy is now a sum over triangles formed from three links 

E = ~ SubSbcSac 
a<b<c 
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This model again has an S(N) event-symmetry and the Z2 symmetry is now 
extended to a gauge symmetry. This is already too complicated to solve 
exactly by any obvious means. 

4. HIDDEN SYMMETRY AND MOLECULAR MODELS 

It will be difficult to accept the principle of event-symmetric space-time 
without a correspondence principle which reduces an event-symmetric model 
to recognized theories of physics. In particular it will be necessary to explain 
how the symmetric group is reduced to the diffeomorphism group on a 
(3 + D-dimensional manifold which we know as the invariance of general 
relativity. 

An obvious possibility is that there may be a mechanism of spontaneous 
symmetry breaking which breaks the symmetric group and leaves the diffeo- 
morphism group as its residual symmetry. By analogy with such mechanisms 
in statistical mechanics and particle physics we might suppose that there are 
phase transitions at high energy scales above which the event-symmetry is 
restored. This is difficult to imagine, but fortunately nature has provided us 
with a familiar phenomena which, by analogy, can give us an intuitive feel 
for how such a mechanism might operate, namely, soap film bubbles! 

Consider the way in which soap bubbles could arise in a statistical 
physics model of molecular forces. The forces should be functions of the 
relative position vectors X,~ and orientation vectors U~ of N soap molecules. 
For simplicity kinetic energy is neglected and a potential energy function 
will be defined, 

E = V(X , Xb, Uo, UO 
ab 

A partition function is then derived, 

Z = j e -dE dX dU 

The potential should tend rapidly to a constant at large distances in order 
to suppress long-range interactions, and should be invariant under global 
translations and rotations. Furthermore, the potential should be invariant 
under exchange of any two molecules. This introduces a symmetry described 
by the symmetric group S(N). An analogy then exists between the molecular 
model and a model of event-symmetric space-time. Molecules correspond to 
space-time events. 

The statistical behavior of the model will depend on the form of the 
potential energy function. It must be chosen very carefully for there to be a 
phase in which bubbles form. The forces must favor alignment of the mole- 
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cules in such a way that they tend to form two-dimensional surfaces at the 
minimum energy. 

The distance between each pair of molecules is given by 

r , , b  = I X , ,  - Xt, I 

and the angle between the orientation of a molecule and the line joining it 
to another is 

c o s ( 0 , , b )  = 

A suitable potential is 

Ua" (X.  - Xh) 

r~b 

V = [4r~b t -- sin2(0~b) - sin2(0b~)]e -~b 

In the case of a system with just three molecules the minimum configuration 
is an equilateral triangle with length of  side r = 1 + ~ and each molecule 
orientated perpendicular to the triangle. Many molecules will likewise try to 
arrange themselves in triangles which will join to a planar lattice. The 
attraction of molecules will draw the molecules closer together to a spacing 
of r = 2.13 . . . .  The attraction at long distance is too weak to destabilize 
this configuration. 

At zero temperature the molecules will fall into the low-energy two- 
dimensional lattice. If there is a large but finite number of molecules, they 
will almost certainly arrange themselves on the surface of a polyhedral 
structure which would appear like a frozen crystalline bubble. We are more 
interested in what will happen at nonzero temperature. It is impossible to be 
certain of the behavior without detailed analysis or a numerical simulation, 
but for the purposes of this example it is enough to conjecture. 

At low temperatures the bubble will start to melt and it is easy to imagine 
that it will start to deform in shape. It is likely that there will be a low 
temperature at which there is a phase transition. Above this temperature the 
molecules will no longer stay in the lattice formation, but will be able to 
flow around the bubble. This melting phase transition can be compared to a 
model of  space-time as a critical solid (Orland, 1993). It will be possible for 
the bubble to change topology by splitting or forming holes. At a higher 
temperature the bubble must eventually evaporate to form a gas with no 
apparent topological form. 

The conjecture, therefore, is that the bubble model has three phases as 
temperature changes, a solid phase, a liquid phase, and a gas phase. The 
interpretation in terms of event-symmetric space-time is that the liquid bubble 
phase is analogous to two-dimensional quantum gravity in its Riemannian 
sector. At high temperatures space-time evaporates into a gas of events. In 



1046 Gibbs 

the gas phase the event-symmetric nature of space-time is evident, but time 
and space as we know them have no meaning. The dimension of space-time 
has changed at the phase transition from two to three. 

In the liquid phase space-time appears to have recognizable properties 
such as curvature and its event-symmetric nature is no longer evident. We 
might say that the symmetry of event-symmetric space-time has been sponta- 
neously broken leaving diffeomorphism invariance as a residual symmetry, 
but some caution is needed. There is no apparent order parameter which 
would enable us to distinguish qualitatively between the liquid and gas phases. 
Furthermore, the bubbles can change topology, so we cannot identify the 
diffeomorphism group of one specific manifold as the residual symmetry. 
The model actually has a more general phase diagram in which density is a 
parameter as well as temperature. The density can be controlled by placing 
the molecules in a finite-sized box. It is well known that in the phase diagram 
of water it is possible to go from the gas phase to the liquid phase without 
passing through a phase transition if a high pressure is applied. The same 
thing may happen with the bubble model. 

In view of this it is preferable to say that event-symmetry is hidden rather 
than broken. It is worth recalling that in general relativity diffeomorphism 
invariance is also hidden without being broken. There is no evidence of 
space-time curvature at human distance scales and before the theory of general 
relativity it was not at all obvious that physics was invariant under general 
changes of coordinate system beyond the Poincar6 transformations. Similarly 
I propose that physics is invariant under permutations of space-time events 
even though it does not appear to be the case. 

The physical interpretation of the gas phase is spectacular. Space-time 
itself may evaporate at very high temperature or density, with changes of 
space-time dimension or possibly loss of all concept of dimension. If the 
principle of event-symmetric space-time holds, then this must be the fate of 
matter when it is compressed at the singularity of a black hole. A similar 
description of the initial state of the universe may be possible. 

It is probable that both the bubble model and real physics have a richer 
phase diagram in the high-density and high-temperature corner than that 
described here. 

5. TOPOLOGY AND RANDOM GRAPHS 

The molecular models of the previous section require an external space 
in which to embed bubbles representing space-time. One of the strengths of the 
theory of general relativity is that it formulates curved space-time intrinsically 
without the need to refer to any external space. Most of the event-symmetric 
models are also intrinsic in nature, but the lack of an external space-time 
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makes it more difficult to see how a finite-dimensional space-time could 
arise through a mechanism of  symmetry hiding. 

The simplest type of model for which this might be possible are random 
graphs in which N nodes, or space-time events, are randomly pairwise con- 
nected by ½N(N - 1) links. Each graph is defined by link variables lab, a < 
b, which are conventionally give the value 1 if the nodes a and b are linked 
and 0 otherwise. Such systems have occasionally been studied as pregeometric 
models of space-time (Dadic and Pisk, 1979; Antonsen, 1994; Requardt, 
1995). 

An event-symmetric action (or energy) for a random graph is a function 
of the graph which is invariant under permutations of the nodes. For example, 
actions defined as functions of the total number of links L and the total 
number of triangles T in the graph would be event-symmetric. The partition 
function might be defined as follows: 

L = E l o b  
a<b 

T =  ~ l~blb~l~ 
a<b<c 

E = T - a L  

Z =  ~ e -~e 
It, hi 

It is interesting to see if we can define dimensionality on a random graph. 
For a given node we can define a function L(s), the number of nodes which 
can be reached by taking at most s steps along links. If L(s) obeys a power 
law on an infinite graph for all nodes, 

l(s) ---> s ° as s ---> 

then the graph has dimension D. There are other ways to define dimensionality, 
including at least one which works for finite graphs (Evako, 1994). 

For the example partition function above we might hope that there is a 
phase in which the expectation value of dimension takes some interesting 
value like 3 or 4. The action favors triangles in the graph, while disfavoring 
links. If the balance between the two were to favor structures of low dimen- 
sion, then we would have a similar mechanism of space-time formation and 
event-symmetry hiding as we did in the soap-film model, but in this case 
there would be no artificial extrinsic space in which it was embedded. 

In fact it seems to be quite difficult to construct random graph models 
which dynamically generate space-time in a fashion similar to the soap-film 
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model. There is at least one model which manages to easily produce a one- 
dimensional space-time. The action is defined as 

V~= ~ l~b + ~ tba 
b > a  b < a  

E =  ~ ( V , , -  2) 2 
u 

V~ is the valence of event a and the energy function will be minimized when 
there are exactly two links connected at each node. This will obviously result 
in linear structures at low temperatures. 

Random graph models can be studied in detail either analytically using 
such methods as mean-field theory, or numerically using Monte Carlo algo- 
rithms. Through careful analysis, it may be possible to contrive an action 
which generates manifolds of two, three, or four dimensions. Here I will 
choose to skip past those avenues, which are likely to be dead ends, and 
follow another which seems to lead to better things. 

The concept of random graph can be extended by introducing higher 
dimensional variables. A variable similar to the link variable but with three 
event indices, Gbc, a < b < c, could indicate the triple connection of the 
vertices of a triangle if its value is one and the absence of a connection if 
its value is zero. It is convenient to extend the array of values using antisymme- 
try and allow its elements to take on values - I ,  0, or 1, 

t a b c  = - -  t b a c  = - -  Gob 

With these variables it is possible to construct actions which force the triangles 
to join together forming two-dimensional surfaces at low temperature just as 
it is possible to form one-dimensional structures with random graphs. For 
example, if 

Lab = ~ t~bc 
c 

a b  

e2 = ~ t2bc 
abc  

The term E~ will be minimized when an equal number of positive and negative 
variables meet at each edge. This corresponds to an orientated triangulated 
surface which is allowed to cross itself. Other terms such as E2 can be 
included in the action to control the area of the surface. 

In this way it is possible to define systems which are event-symmetric 
but which also approximate dynamical triangulations of surfaces as used with 
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considerable success in numerical studies of two-dimensional Riemannian 
quantum gravity (Boulatov et al., 1986). An important aspect of such a system 
is that it automatically includes a sum over different surface topologies. 
Obviously the principle can be extended to variables of dimension higher 
than two, by straightforward generalization to antisymmetric forms with more 
indices corresponding to tetrahedrons and higher order simplices in the graph. 

There are two important lessons to be learnt here. The first is that higher 
dimensional variables are likely to give more interesting models than those 
which just use site and link variables. The second is that systems incorporating 
a suitably weighted sum over topologies can be considered event-symmetric. 
As a topic for future research it would be worthwhile to consider what 
constraints event-symmetry imposes on the weightings in such a sum. 

One displeasing aspect of both the random graph models and the molecu- 
lar models is that the number of dimensions of space-time which they form 
is put in artificially. Ideally we would like to see the number of dimensions 
arise as a purely dynamical result. Perhaps the number of dimensions should 
be able to change through phase transitions. This suggests we should consider 
models with a mixture of variables of different dimensions. An elegant 
model might include the link and triangle variables defined above along with 
variables corresponding to simplices of all other possible dimensions, 

S ,  V a ,  l a b ,  g a b  c ,  . . . 

If each variable is antisymmetric in all indices and there are N events, then 
the sequence will stop with a variable of N indices. I will not endeavor to 
consider what might be suitable terms to use in an action with such variables 
since new principles would be needed to find them. At this point I just want 
to note the fact that the total number of variables is 2 u. This is a huge number 
in comparison to the event-symmetric Ising model, which has N variables 
and 2 u states. 

6. GAUGE SYMMETRY AND MATRIX MODELS 

The random graph models and their generalizations use variables which 
can take on one of a number of discrete values. Such models allow us to 
incorporate event-symmetric space-time which we propose as an extension 
of the diffeomorphism invariance of general relativity. In particle physics we 
are familiar with other symmetries represented by continuous Lie groups. It 
is conceivable that such symmetries could emerge in a discrete model in 
some limit, but the philosophy behind event-symmetric space-time dictates 
that symmetries should appear exactly in the most fundamental formulation. 
Furthermore, it would be pleasing if the space-time symmetries could be 
unified with the internal gauge symmetries of particle physics. 
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For this reason I prefer to consider models with continuous rather than 
discrete variables. We might also remark that if fermions and supersymmetry 
are to be included, we will also have to permit anticommuting Grassmann 
variables. While the discrete-variable models have the character of mathemati- 
cal logic, graph theory, and combinatorics, models with continuous variables 
will naturally have the character of algebraic mathematics. 

Just as almost any physical continuum model can be discretized to 
produce a lattice theory, it is also possible to produce event-symmetric models 
corresponding to scalar field theories and gauge theories. The Wilson formula- 
tion of lattice gauge theory (Wilson, 1974) can be immediately given an 
event-symmetric counterpart in which the cubic lattice is replaced with a 
graph of N events in which each one is linked to each other and a matrix 
group variable is assigned to each link. Gauge-invariant actions can be defined 
in terms of the sum over the trace of products taken around each triangle in 
the graph. 

While such models may be of some interest in other contexts (Rossi 
and Tan, 1995), they fail to satisfy our needs here because, first, there is no 
mechanism which allows the links to connect to form different topologies, 
and second, the symmetric group is not unified with the gauge group. The 
first defect may be remedied by combining a random graph model with a 
gauge model to form a kind of  gauge glass (Bennet et al., 1987), but to cure 
the second we must go further. 

Consider event-symmetric models in which we place real-valued field 
variables A,b on links joining all pairs of  events (a, b). Such models are 
analogues of the random graph models with the discrete variables replaced 
by continuous ones. A suitable action must be a real scalar function of these 
variables which is invariant under exchange of  any two events. 

The link variables Aab can be regarded as the elements of  a square matrix 
A. If the direction of  the links is irrelevant, then the matrix can be conveniently 
taken to be either symmetric or antisymmetric. If there are no self-links, the 
diagonal terms are zero, so it is natural to make the matrix antisymmetric, 

Aab = --Aba 

A possible four-link loop action is 

S = [3 Z AababcA,,daa,, + m • A~b 
a,b,c,d a,b 

= [3 Tr(A 4) + m Tr(A 2) 

This action is invariant not only under the symmetric group acting on events, 
but also the orthogonal group acting as similarity transformations on the 
matrix. The symmetric group S(N) is incorporated as a subgroup of O(N) 
represented by matrices with a single one in each row or column and all 
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other elements zero, in such a way that the matrix permutes the elements of 
any vector it multiplies. 

This is an appealing scheme since it naturally unifies the S(N) symmetry, 
which we regard as an extension of diffeomorphism invariance, with gauge 
symmetries. If the symmetry broke in some miraculous fashion, then it is 
conceivable that the residual symmetry could describe quantized gauge fields 
on a quantized geometry. 

Consider, for example, a discrete gauge SO(10) symmetry on a four- 
dimensional periodic hypercubic lattice of L = M 4 points. The full lattice 
gauge symmetry group Lat(SO(lO), M) is generated by the gauge group 
SO(10) L and the lattice translation and rotation operators. A matrix representa- 
tion of this group in 10L X 10L orthogonal matrices can be constructed from 
the action of the group on a ten-component scalar field situated on lattice 
points. The lattice group is therefore isomorphic to a subgroup of an orthogo- 
nal group. 

Lat(SO(lO), M) C O(IOL) 

We can imagine a mechanism by which the O(10L) symmetry of a matrix 
model broke to leave a residual Lat(SO(lO), M) symmetry. It seems highly 
unlikely, however, that such an exact form of spontaneous symmetry breaking 
could arise naturally. 

Random matrix models have been extensively studied in the context 
where N is interpreted as the number of colors or flavors. The event-symmetric 
paradigm suggests an alternative interpretation in which N is the number of 
space-time events times the number of colors. This interpretation has been 
considered before (Kaplunovsky and Weinstein, 1985). 

This suggestion for unification of space-time and internal gauge symme- 
try might be compared with the similar achievement of Kaluza-Klein theories 
where space-time is extended to have more dimensions and the symmetry is 
broken by compactification of one or more of the dimensions. With matrix 
models the symmetry is much larger and could be compared with a Kaluza- 
Klein theory which had an extra dimension for each field variable (Kaneko 
and Sugawara, 1983). 

An interesting result for matrix models which is responsible for them 
attracting so much attention is that the perturbation theory of a matrix model 
in a large-N double-scaling limit is equivalent to two-dimensional gravity or 
a c = 0 string theory ('t Hooft, 1974; Kazakov, 1989; Fukuma et al., 1994). 

We have discussed matrix models with an O(N) symmetry, but models 
based on Hermitian matrices and having unitary U(N) symmetry are equally 
interesting, as are models with invariance under the symplectic groups Sp(N). 
It is just as easy to construct supersymmetric matrix models using the familiar 
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families of supersymmetry matrix groups U(LIK) and OSp(LIK) (Gilbert 
and Perry, 1991; Alvarez-Gaume and Manes, 1991; Yost, 1992). 

As an example we might use super-Hermitian matrices which take a 
block form as follows: 

S = iB t 

where A is a Hermitian K × K matrix of commuting variables, B is a K × 
L matrix of anticommuting variables, and C is a Hermitian L X L matrix of  
commuting variables. The supertrace is defined as 

s Tr(S) = Tr(A) - Tr(C) 

Actions defined with terms expressed as the supertrace of powers of  the 
supermatrices are invariant under a U(KIL) supersymmetry. This can be 
interpreted as an event-symmetric model with two types of  event since the 
supergroup has a subgroup isomorphic to S(K) ® S(L). 

7. L O C A L I T Y  AND T E N S O R  M O D E L S  

Just as random graph models can be generalized to models with higher 
dimensional variables, matrix models can likewise be generalized to tensor 
models. The action can be a function of any set of scalars derived from the 
tensors by contraction over indices, with the indices ranging over space-time 
events. Such models have the same O(N) symmetry as matrix models. 

In tensor models it is often useful to associate tensors which have certain 
symmetry constraints with geometric objects having the same symmetry in 
such a way that the indices correspond to vertices of  the object. For example, 
a rank 3 tensor which is symmetric under cyclic permutations of  indices, 

Tabc = Tbca 

can be associated with a triangle joining the three vertices a, b, and c. If, in 
addition, the tensor is made fully antisymmetric, then degenerate triangles 
with two or more vertices at the same event are eliminated and the sign 
change is useful to indicate orientation reversal of the triangle. Often models 
of interest use antisymmetric rank-d tensors which can be associated with a 
system of  orientable d-simplices. 

We should took for a tensor model with a symmetry-hiding mechanism 
such that the dynamics separates some events which can then be regarded 
as being at far distances on a manifold, while others remain close to each 
other. In other words, we need to generate local interaction. Event-symmetric 
space-time seems to be contrary to locality, but happily there are principles 
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of locality which can be invoked independently of  any event-symmetry- 
hiding mechanism. 

In each of the models we have looked at there are field variables which 
have an association with one or more events. In matrix models the matrix 
element A~b is associated with two events indexed by a and b. They represent 
an amplitude for the connection of  those two events as linked neighbors in 
space-time. In tensor models a tensor of  rank r is likewise associated with 
r events. When symmetry hiding occurs we expect the events to somehow 
spread themselves over a manifold. A field variable associated with events 
which are not near neighbors should be physically insignificant; this will 
usually mean that it is very small. Field variables which are associated with 
a local cluster of  events can be large and would be significant in a continuum 
limit. Two such variables which are localized around different parts of the 
manifold should not be strongly correlated. They must therefore not appear 
in the same interaction term of  the action unless multiplied by some small 
field variable. 

This heuristic picture leads to a definition of  locality in which interaction 
terms in the action are excluded if they factor into the product of two parts 
which do not share events. For example, in a two-matrix model with matrices 
A and B the action could contain terms such as Tr(ABAB) but not Tr(AB) 2 
or Tr(A)Tr(B). 

More precisely, we can define an interaction graph corresponding to 
any interaction term. The graph would have a node for each component 
variable in the term. Two nodes are then linked if the variables are associated 
with at least one event in common. 

We then say that the model satisfies the weak locality principle if all 
interaction graphs are connected. We will also say that it satisfies the strong 
locality principle if every pair of  nodes is linked in all interaction graphs, 
i.e., they are triangles, tetrahedrons, or higher dimensional simplices. 

As an example, a matrix model with terms given by the traces of powers 
of the matrix 

I~ = Tr(A") 

is weakly local because the interaction graphs are at least n-sided polygons. 
If the model includes only terms up to 13, then it is strongly local. 

It is reasonable to expect that physical event-symmetric field theories 
would have to be at least weakly local since otherwise nonlocal interactions 
would persist after a symmetry-hiding mechanism has taken effect. There 
seems to be no special reason to demand that a theory should be strongly 
local, but it is notable that this condition often reduces the number of  possible 
interaction terms from infinity down to a few without seeming to exclude 
the most interesting models. 
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There is one particular form of tensor model which deserves a brief 
mention here. It is defined with simplex variables such as the antisymmetric 
rank 3 tensor T,,bc associated with triangles. We define an action with terms 
whose connectivity represents a simplex of one higher dimension, e.g., 

S = ~ T~bcTaa, TbafT,.f 
a.b.c,d,e.f 

Just as the perturbation theory of a matrix model describes randomly triangu- 
lated surfaces, the perturbation of these tensor models defines random simpli- 
cial models of higher dimensional surfaces (Ambjorn et  al . ,  1991; Sasakura, 
1991). These tensor models do not exhibit the same universality properties 
which make the matrix models so powerful. This fault has been corrected 
by Boulatov, who replaces tensors with multivariate functions on groups (or 
quantum groups) and defines an action which generates three-dimensional 
topological lattice field theory (Boulatov, 1992). 

8. PARTICLE MODELS AND CLIFFORD ALGEBRAS 

We have seen how antisymmetric tensor forms can be associated with 
simplices in event-symmetric space-time and how they might interact together 
to form manifolds. We will now explore the possibility of a model which 
includes such variables on simplices of all possible dimension, i.e., the model 
is defined by a sequence of antisymmetric forms, 

6,  ob, . . . .  

Since there are only a finite number N of events, the family will end with a 
rank N tensor having only one independent component. 

There are many actions which could be constructed from these tensors 
if we just require the O(N) symmetry. Such models have a huge number of 
degrees of freedom, one for each possible simplex with vertices on space- 
time events. Perhaps we could impose a much larger symmetry so as to 
reduce the number of possible models and at the same time the effective 
number of degrees of freedom. 

A natural way forward is to interpret the family of antisymmetric forms 
as the components of either an exterior algebra or a Clifford algebra. Here 
we choose the latter option. A set of gamma operators form the generators 
of the algebra modulo the usual anticommutator relations. 

"~a, a = 1 . . . . .  N 

[Y~, Yb]+ = 28~b 

It follows that the algebra has dimension 2 N and an element can be written 

= = + +  o 'Y,,yb + . . .  

a a,b 
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A Clifford algebra is an associative algebra with unit and it has a Z2 grading 
given by the parity of the number of gamma operators in a product. The 
graded commutator is therefore a product for a Lie superalgebra. This super- 
symmetry is much larger than the O(N) symmetry of the general tensor model 
and from now on we will impose it as a symmetry of our models. It is well 
known that the second-order operators % %  generate the orthogonal Lie 
algebra, so event-symmetry is contained within this algebra. 

Clifford algebras play several useful roles in particle physics. For exam- 
ple, they are of crucial importance in construction of spinors and supersymme- 
try. These points in themselves are sufficient to justify their use here. However, 
there is a third role played by Clifford algebras which may be even more 
significant. The single gamma matrices together with the unit generate a Lie 
superalgebra which is known as a Heisenberg algebra. If N is even, the 
operators can be paired to form a system of N / 2  fermionic creation and 
annihilation operators, 

bi = I (~ /2 i -1  + i'Y2i) 
g = J 

~' (Y2i- I  --  iy2i) 

From this we deduce that the Clifford algebra is isomorphic to the algebra 
of fermionic operators and is effectively a Fock space for a species of identical 
fermions and their antiparticles. The importance of this is that it links the 
event-symmetry of space-time to the symmetry of identical particle exchange 
and suggests a realization of Mach's claim that space-time is generated by 
interactions of matter. 

To construct an event-symmetric model we treat the components of the 
algebra as field variables. Because of the supersymmetry it is necessary to 
take the odd-rank tensors as anticommuting Grassmann variables. We must 
define an action which is an invariant of the supersymmetry. The highest 
rank operator of the algebra is usually written 

h'/V+l = I-[ '~/a 
/2 

which has a pseudoscalar component {*. We discover that the linear function 
I~ mapping the algebra onto this component is an invariant, 

l l (~)  = {* ~ l t ([~,  A]) -= 0 

An infinite sequence of invariants can be generated by applying this function 
to powers, 

In(_=) = i~(_=-) 
If these are to be suitable terms in an action functional, then N must be even, 
otherwise the invariants are anticommuting variables. Examining the form 
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of these invariants reveals a dramatic locality problem. Whereas we wished 
all terms to be formed from local contractions over indices, we find that each 
term has products of tensor components which include every index exactly 
once. This problem is resolved by observing that a field variable which can 
be associated with every event except a small set can equally well be associ- 
ated with the small set through the Hodge star duality transformation 

The invariants can now be written as expressions combining the components 
and their duals which satisfy our ideas of locality. 

Having constructed such a satisfying model which seems to unify space- 
time and matter, we might well feel encouraged to study its dynamical 
behavior with some sense of optimism. However, it is well known that the 
gamma matrices which generate the Clifford algebra have a representation 
in matrices of size D X D, where 

D = 2 N/2 

Because of the Grassmann variables, these can be taken as supermatrices. 
Since the dimension of  the algebra is the same as the dimension of the 
matrices as a vector space, it follows that there is an isomorphism between 
the Clifford algebra and the algebra of supermatrices over complex numbers. 
The invariants we have used are merely the trace of these matrices to the 
nth power and it follows that the model we have described is mathematically 
equivalent to a supermatrix model. Such models are not likely to be rich 
enough to provide a complete description of physics. 

Despite this, the model has interesting properties and we will go on to 
find that modifications to the model can make it more promising. It is also 
worth noting the possibility of relationships with other applications of Clifford 
algebras to models of space-time physics (Finkelstein, 1982; Smith, 1994). 

9. EVENT-SYMMETRIC STRING THEORY 

Despite the enormous number of papers written on superstring theory 
and the rich mathematics discovered in the course of  that research, physicists 
still appear to be far from understanding its origins. It is generally believed 
that string theory has a huge hidden symmetry which is restored at very high 
energies (Gross, 1988). If the nature of that symmetry could be understood, 
then it might be possible to construct a fundamental formulation of string 
theory which would allow its nonperturbative phenomenology to be studied. 

A result of  great significance here is that in string theory it is possible 
to make smooth transitions between topologically distinct space-time back- 
grounds (Aspinwall et al., 1994). As I have already argued, the combined 
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requirements of space-time symmetry and topology change seem to force us 
to accept the principle of event-symmetric space-time. 

This is sufficient justification to seek an event-symmetric model of string 
field theory. That is not an easy task since there is no completely satisfactory 
formulation of continuum string theory which might be discretized in some 
event-symmetric fashion. One clue must be matrix models which are equiva- 
lent to c = 0 string theories and which we can interpret as event-symmetric. 
We should also take into account the Clifford algebra model which we saw 
as a model of fermions but which also included supersymmetry. 

If we could find a suitable description of string symmetry, then the job 
would be at least half complete. For mathematicians, classifying symmetries 
has been a priority problem throughout the 20th century. Most promising for 
our purposes must be the various forms of Kac-Moody algebras and quantum 
groups which are related to conformal field theory (see, e.g., Pressley and 
Segal, 1988; Fuchs, 1992). Kaku tried to formulate symmetry for string theory 
in terms of Lie algebras described on topological strings (Kaku, 1988, 1990). 
Other new forms of symmetry have been found in string theory such as W=- 
algebras (e.g., Shen, 1992; Bouwknegt and Schoutens, 1993) and it is known 
that string theory compacted onto a 26-dimensional torus possesses a symme- 
try known as the Fake Monster Lie algebra (see, e.g., Gebert, 1993). Despite 
all these discoveries, there are large gaps in the understanding of infinite- 
dimensional symmetry algebras and nothing is known which can include all 
the supposed symmetries of string theory while at the same time unifying 
space-time symmetries with internal gauge symmetries and explaining its 
remarkable dualities (e.g., Hull and Townsend, 1995). 

In an event-symmetric space-time a string is most easily represented by 
a loop connecting a cycle of space-time events and is therefore an object 
made of discrete points. This may seem unnatural since string theory is 
normally regarded as a theory of continuous strings. However, it is possible 
that strings are topological in nature and could be exactly described as discrete 
strings with a finite spacing between events (Klebanov and Susskind, 1988; 
Thorn, 1991; Kostov, 1995). The topological form will most likely become 
apparent through a q-deformation in which the partons of the discrete strings 
take on fractional statistics. 

In a number of preprints (Gibbs, 1994b,c, 1995a) I have tried to construct 
Lie algebras based on such discrete loops in analogy with Kaku's string 
groups. Although this work produced many positive results, it turned out to 
be flawed since the Lie superalgebras I constructed for closed loops do not 
satisfy the graded Jacobi identity in all cases (Borcherds, 1995). The result 
of correcting the anomaly is a tidier formulation which I believe has much 
more promise for the possibility of generalization and deformation. It will 
be presented in its most basic form here for closed strings. 
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Let E be a set of  N space-time events and let V = span(E) be the N- 
dimensional vector space spanned by those events. Then define T = Tensor(V) 
to be the free associative algebra with unit generated over V. The components 
of T form an infinite family of tensors over V with one representative of  
each rank, 

¢'  = {¢,, ~ . ,  ~,.,, ~',,h . . . . .  } 

I ~ I 2 I 2 I 2 qbJqb2 {~t~2, ~J~o~ + ~,,~-, tp tp,,~, + + } = tp,tpb q~,~qo . . . .  

The basis of  this algebra already has a geometric interpretation as open 
strings passing through a sequence of  events with arbitrary finite length. 
Multiplication of  these strings consists merely in joining the end of  the first 
to the start of  the second. We can denote this as follows: 

cb = tp + ~ tp~a + £ q~bab + ~, tp~b,abc + . . .  
a a,b tl,b,c 

We now construct a new algebra by adding an extra connectivity structure 
to each string consisting of arrows joining events. There must be exactly one 
arrow going into each string and one leading out. This structure defines a 
permutation of  the string events so there are exactly K! ways of adding such 
a structure to a string of  length K, 

a b c d ~ _ _ ~  

These objects now form the basis of a new algebra with associative multiplica- 
tion consisting of joining the strings together as before, while preserving the 
connections. Finally the algebra is reduced modulo commutation relations 
between events in strings which are defined schematically as follows: 

a b + b a = 28~b 

X l T 
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These are partial relations which can be embedded into complete relations. 
Closed loops which include no events are identified with unity. For example, 
the lines can be joined to give 

a b + b a 

.... " t l  

= 2~o~ 

This example shows the cyclic relation on a loop of two events. The arrows 
can be joined differently to give another relation, 

: 2 -  

which is the anticommutation relation for loops of single events. 
By applying these relations repeatedly, it is possible to reorder the events 

in any string so that the strings are separated into products of  ordered cycles. 
Therefore we can define a more convenient notation in which an ordered 
cycle is indicated as follows: 

(ab  . . . c) = a ---) b - - - ) . . .  ---> c 

"t t 

We can generate cyclic relations for loops of any length such as 

(ab)  = - ( b a )  + 2~,,b 

(abc)  = (cab)  + 28b~.(a) -- 28,c(b) 

( a b c d )  = - ( d a b c )  + 28,.d(ab) -- 28bd(a)(C) + 28,,a(bc) 

and graded commutation relations such as 

(a)(b) + (b)(a)  = 28,,b 

(ab)(c)  - (c ) (ab)  = 280,.(a) - 28,,,.(b) 

Clearly the algebra has a Z2 grading given by the parity of the length of 
string and it is therefore possible to construct an infinite-dimensional Lie 
superalgebra using the graded commutator. 
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The length-one cycles are the generators of  a Clifford algebra and there 
is also a homomorphism from the full algebra onto a Clifford algebra defined 
by removing the loop structure from the strings. 

The physical interpretation is that this algebra describes the symmetry 
of a discrete superstring formed from loops of fermionic partons in event- 
symmetric space-time. Mathematically it appears to be an entirely new type 
of symmetry which is likely to have generalizations and deformations that 
could be of some significance. 

10. CONCLUSIONS 

I have introduced the principle of event-symmetric space-time and argued 
for its validity despite its unlikely-seeming consequences. In event-symmetric 
models the nature of space-time, including its topological structure, is dynami- 
cally determined. A physical consequence is that at very high temperatures 
space-time may change dimension or even evaporate, losing all sense of 
causality and locality. 

In a series of toy models I have tried to gain a feel for what a correct 
event-symmetric theory should look like and behave like. This has led to 
algebraic models with high degrees of symmetry. The most advanced models 
are event-symmetric discrete string theories. 

To finish the work on event-symmetric string theory it will probably be 
necessary to deform the string algebras described here. It is probably necessary 
to model a string as a loop of particles with fractional statistics rather than 
fermions. Such a deformation might be possible if the loops are replaced 
with knots. 

To complete the theory it will also be necessary to define the dynamics 
of the system and discover a correspondence with recognized space-time 
physics. There is still a long way to go. 
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