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Principle of Event Symmetry

Philip E. Gibbs!
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To accommodate topology change, the symmetry of space-time must be extended
from the diffeomorphism group of a manifold to the symmetric group acting on
the discrete set of space-time events. This is the principle of event-symmetric
space-time. I investigate a number of physical toy models with this symmetry
to gain some insight into the likely nature of event-symmetric space-time. In the
more advanced models the symmetric group is embedded into larger structures
such as matrix groups which provide scope to unify space-time symmetry with
the internal gauge symmetries of particle physics. [ also suggest that the symmetric
group of space-time could be related to the symmetric group acting to exchange
identical particles, implying a unification of space-time and matter. I end with a
definition of a new type of loop symmetry which is important in event-symmetric
superstring theory.

1. INTRODUCTION

One of the greatest challenges facing theoretical physics is to understand
the structure of space-time at the Planck scale. At such small distances
quantum theory and general relativity combine and space-time is replaced
by some unknown pregeometry. In the 1960s and 1970s some basic ideas
about the small-scale structure of space-time were presented by Finkelstein,
Penrose, and Wheeler, but otherwise very little progress was made. In the
last decade a growing number of speculative pregeometry models have been
studied. At the same time developments in quantum gravity such as string
theory and canonical quantum gravity have thrown much light on the micro-
scopic nature of space-time. A bibliography of references on the small scale
structure on space-time can be found in my review (Gibbs, 1995c).

One clear message from theories of quantum gravity is that there is a
physical minimum distance beyond which the Heisenberg uncertainty princi-
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ple inhibits measurement (Garay, 1994). There are also suggestions resulting
from studies of the thermodynamics of black holes that the number of physical
degrees of freedom in a volume of space must have a strict finite limit
(Bekenstein, 1994). These observations lend credibility to models of discrete
space-time, but it is important not to forget the importance of topology. A
good pregeometry model may have a dual nature with properties of both
discrete and continuous space-time.

The theory of event-symmetric space-time is a discrete approach to
quantum gravity in which the exact nature of space-time will only become
apparent in the solution. Even the number of space-time dimensions is not
set by the formulation and must be a dynamic result. In relation to other
pregeometry theories, event-symmetric space-time is closest in spirit to quan-
tum relativity (Finkelstein and Gibbs, 1993) and discrete differential manifolds
(Dimakis er al., 1995).

Principles of symmetry are of primary importance in both general relativ-
ity and quantum mechanics and might be expected to be of at least as much
importance in a combined theory of quantum gravity. However, very few
pregeometry models use symmetry in a useful way. Wheeler suggests that
symmetry conceals the pregeometric structure and should not be given any
importance (Wheeler, 1994). My own belief is that the symmetry so far
discovered in nature is just the tip of a very large iceberg. In the event-
symmetric approach to pregeometry I take symmetry to be an overriding
principle no matter how bizarre the conclusions. Specifically, I argue that
space-time symmetry must be enlarged to include invariance under the sym-
metric group acting on space-time as a discrete set of events. By enlarging
the symmetry still further it may be possible to unify space-time symmetry
with internal gauge symmetry.

At the present time the best candidate to unify all known forces is
superstring theory. The aspects of superstring which are least well understood
are its symmetry and geometric foundation. Event-symmetric space-time may
be the solution to solving these problems and already there are some interest-
ing models of event-symmetric string theory which will be described in
this paper.

Before I go into the details of the theory it may be interesting to recall
some of the different philosophical ideas about space-time which have been
disputed. As observers we perceive events in our physical environment
through our senses. In our minds we possess a model of space and time in
which we place these events. Before the 20th century a number of philoso-
phers, notably Mach, suggested that since we do not perceive space and time
directly, they should not be regarded as existing absolutely in their own right,
but only as a result of relations between material objects. On this basis Mach
stated his principle that inertia is determined by all the mass of the universe
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and is therefore relative to the distant stars. This is a physically testable
prediction which is known to be highly accurate.

Many mathematicians, however, took the opposite viewpoint. Space is
studied as a geometric object existing independently of matter. Riemann went
further, suggesting that matter itself could be just a manifestation of local
curvature of space.

Einstein was impressed with Mach’s philosophy and hoped that Mach’s
principle would follow as a consequence of general relativity. Paradoxically
he found that Riemann’s mathematics of curved geometry was just what he
needed to formulate the theory. He showed that the gravitational force was
a result of geometrodynamics. The beauty of the result was so persuasive
that physicists turned away from the earlier philosophy of Mach toward
theories in which matter and the other forces might be understood as a
consequence of geometry. Kaluza—Klein theories are the best known of this
type, but there are also theories in which particles are thought of as purely
geometrical objects such as microscopic black holes or wormholes.

In the light of this it is interesting to look forward to what the event-
symmetric physics is going to tell us about the relationship between matter
and space-time. The principle is a direct extension of covariance in general
relativity with invariance under diffeomorphisms being extended to invariance
under any one-to-one mapping. In some of the event-symmetric models [
will propose, it is natural to identify the symmetric group acting on space-
time with the symmetry under exchange of identical particles. This strongly
suggests a return to a Machian point of view in which space-time is seen as
a consequence of relationships between matter.

Development of the theory of event-symmetric space-time has been my
interest for the last five years and has previously been reported in e-prints
available on the internet (Gibbs, 1994a, 1995b). In this paper [ include and
extend the results of those papers.

2. EVENT-SYMMETRIC SPACE-TIME

General relativity is based on the principle that physics is invariant under
any differentiable change of space-time coordinates. To be more precise,
general relativity is defined on a manifold M and is invariant under the group
of diffeomorphisms on the manifold diff(M). Symmetry principles of this
type have become the cornerstone of theoretical physics this century. The
recipe for using symmetry in theory cooking goes something like this:

1. Choose a group which you think corresponds to a symmetry of
physics.

2. Choose a representation of the group which could correspond to
the physical variables.
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3. Choose an invariant function of the representation to define the
action principle for your theory.

When symmetry is combined with other requirements such as locality and
renormalizability in quantum field theory, the constraints on choice are so
high that it becomes possible to construct theories with a minimum of empiri-
cal input. The idea is so compelling that we might believe the laws of physics
are based on some fundamental symmetry principle defined by some universal
symmetry group G,. All known symmetries of physics would be derived
from the universal group as residual symmetry left over after spontaneous
symmetry breaking. If only we knew what G, was we would be just a couple
of steps away from knowing the laws of physics.

Let us suppose for the moment that this is really true. What could we
say about the group G, 7 It must contain a subgroup isomorphic to the
symmetry of general relativity,

diff(M) C Gy
and another isomorphic to the gauge group,
G" C Gy

This immediately raises a question: Is the topology of the manifold M deter-
mined by the universal group? The diffeomorphism groups on two different
manifolds are not isomorphic if they have different topologies. For aesthetic
reasons we might prefer that the topology of the space-time manifold is not
written into the laws of physics since it would fix the global properties of
the universe. There are also arguments from microscopic physics for the
same conclusion. Wheeler first pointed out that in a model of quantum
geometrodynamics the fluctuations of space-time at the Planck scale would
be so great that space-time would be reduced to a foam of virtual wormholes
(Wheeler, 1957). The topology of space must be continually changing and
quantum gravity must include a sum over all possible space-time topologies.
The arguments in favor of topology change have only become stronger with
time (Balachandran et al., 1995).

This forces us to conclude that the universal group must contain the
diffeomorphism groups for an infinite number of topologically different mani-
folds. The puzzle that this presents was discussed by Witten when trying to
reason what would be the universal group of string theory (Witten, 1993).
We must find a group that contains all the allowed diffeomorphism groups.
One possibility might be to simply take the direct product of all the groups,
but this would define a universe made up of many independent manifolds,
which is not what we would want.

Witten's puzzle seems to epitomize the incompatibility between general
relativity and quantum mechanics. There may be many ways of resolving it,
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including the possibility of giving up the fundamental role of symmetry or
discarding topology change. In this paper we explore another simple but
radical solution. The diffeomorphism group on a manifold is a subgroup of
all one-to-one mappings on the manifold, otherwise known as the symmetric
group on the set of events in the manifold. The symmetric group is independent
of the topological structure of the manifold and is therefore isomorphic to
the symmetric group on any other manifold or any other set which has the
same cardinality,

diff(M) C S(M) = (X))

It follows that the diffeomorphism group for any manifold whatsoever is
isomorphic to a subgroup of the symmetric group and therefore, if the univer-
sal group contains the symmetric group acting on space-time events, then
topology change is possible. This simple observation leads to the follow-
ing definition.

Definition. A model of space-time is said to be event-symmetric if it is
invariant under the symmetric group acting on space-time events, or a larger
group which has a homomorphism onto the symmetric group,

S(E) C GylK

To satisfy this definition it is not necessary to have an uncountable
number of space-time events. A model with the symmetric group S(N,) would
be event-symmetric. It is convenient to regularize the number of space-time
events to a finite number N and take the large-N limit while scaling some
of the parameters of the model as functions of N. This approach is valid
since a manifold with an uncountable number of events can be densely
covered with a countable number of events.

An important example of a group with a homomorphism onto the sym-
metric group is the braided group B(N). The universal symmetry Gy, is likely
to be a larger structure such as a matrix group like U(N) which contains the
symmetric group S(V) represented by permutation matrices. Corresponding
symmetry structures for the braid group would be the quantum matrix groups.
As we shall see, the principle of event-symmetric space-time becomes more
and more interesting as we seek to extend the symmetric group to the most
general symmetry possible.

3. SIMPLE MODELS

In event-symmetric space-time there is no continuous time parameter.
This should be an advantage in physical situations where time might break
down, i.e., at singularities. On the other hand, it makes it unclear how to
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define quantum models. The simplest way to proceed is to start from a path
integral approach and generalize.

The construction of the most general quantum system needed for our
purposes is as follows:

+ Define a system of field variables F = (¢, ..., ¢,). Each one may
be real, discrete, or a Grassmann anticommuting variable.

» Define an action functional on the field variables S(F).

» Calculate the partition function

Z = jeis d"cp

» Define observables as functionals on the variables O;(F).
» Calculate expectation values of the observables.

[ Oeis d"(p

0)=—

+ Finally, it may be necessary to take a limit of some sequence of such
models in which n — .

For such a model to make sense as a quanturn system it is necessary
that the action functional § is real and the integral well defined. It is also of
interest to study models where S is imaginary. In that case we can write

S = ipE

Z = ¢ BE
]

B=r

so such a model can be interpreted as a classical statistical physics system
at a temperature T. It is common practice in numerical lattice theory to replace
a quantum system with a statistical one obtained by performing a Wick
rotation from the Lorentzian sector to the Euclidean sector. In lattice quantum
gravity it is also possible to replace Einstein gravity by a statistical model
which can be regarded as gravity in a Riemannian sector. It is not yet known
how valid such a transformation is, but it is certainly worth studying.

There are also both quantum and statistical models of event-symmetric
systems. Ultimately we must be interested in quantum systems, but it is
possible to gain much insight into the nature of event-symmetric space-time
by studying toy models, most of which are statistical in nature.
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To illustrate this we shall solve the event-symmetric Ising model. This
consists of a large number N of ferromagnets represented by spin variables

s, = *1, a=1,...,N

Each spin interacts equally with every other spin according to the energy
function

E = 2 S 5p

a<b

This has S(N) invariance since it is symmetric under spin permutations. It
has an additional Z, invariance under global spin reversal. Solving the partition
function of this model is not very difficult,

Z= Y e BE
{

Sal

Write this as a sum over K negative spins and N — K positive spins,

_< (N BIN Vv - _
Z—KEO (K)exp{N [2(N 1) — 2K(N K)]}

In the large-N limit this can be approximated (up to a constant factor indepen-
dent of N) by an integral over a variable

p = KIN
1
Z“J dp exp(N{B[} — 2p(1 = p) — p In(p) — (1 — p) In(l — p)})
p=0

In this equation we have scaled B as a function of N such that
B=B/N

is kept constant as N — oo,

The function in the exponential has one minimum at p = 1/2 for B <
| and two minima for § > 1. The large-N limit forces the system into these
minima, so there is a phase transition at 3 = | with the Z, symmetry
broken above.

Also of some interest is the gauged Ising model in which the spin
variables are placed on event links,

Sap = 1, a<b
The energy is now a sum over triangles formed from three links

E = 2 SubSbeSac

a<b<c
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This model again has an S(N) event-symmetry and the Z, symmetry is now
extended to a gauge symmetry. This is already too complicated to solve
exactly by any obvious means.

4. HIDDEN SYMMETRY AND MOLECULAR MODELS

It will be difficult to accept the principle of event-symmetric space-time
without a correspondence principle which reduces an event-symmetric model
to recognized theories of physics. In particular it will be necessary to explain
how the symmetric group is reduced to the diffeomorphism group on a
(3 + 1)-dimensional manifold which we know as the invariance of general
relativity.

An obvious possibility is that there may be a mechanism of spontaneous
symmetry breaking which breaks the symmetric group and leaves the diffeo-
morphism group as its residual symmetry. By analogy with such mechanisms
in statistical mechanics and particle physics we might suppose that there are
phase transitions at high energy scales above which the event-symmetry is
restored. This is difficult to imagine, but fortunately nature has provided us
with a familiar phenomena which, by analogy, can give us an intuitive feel
for how such a mechanism might operate, namely, soap film bubbles!

Consider the way in which soap bubbles could arise in a statistical
physics model of molecular forces. The forces should be functions of the
relative position vectors X, and orientation vectors U, of N soap molecules.
For simplicity kinetic energy is neglected and a potential energy function
will be defined,

E=73 VX, X, U, Up)
ab
A partition function is then derived,
Z= [ e PEdx dU

The potential should tend rapidly to a constant at large distances in order
to suppress long-range interactions, and should be invariant under global
translations and rotations. Furthermore, the potential should be invariant
under exchange of any two molecules. This introduces a symmetry described
by the symmetric group S(N). An analogy then exists between the molecular
model and a model of event-symmetric space-time. Molecules correspond to
space-time events.

The statistical behavior of the model will depend on the form of the
potential energy function. It must be chosen very carefully for there to be a
phase in which bubbles form. The forces must favor alignment of the mole-
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cules in such a way that they tend to form two-dimensional surfaces at the
minimum energy.
The distance between each pair of molecules is given by

Tap = IX(: - Xbl

and the angle between the orientation of a molecule and the line joining it
to another is

Ua ) (Xa - Xb)

Yab

cos(6,) =

A suitable potential is
V= [4rg — sin*(8,,) — sin’(8,,)]e "

In the case of a system with just three molecules the minimum configuration
is an equilateral triangle with length of side r = 1 + ﬁ and each molecule
orientated perpendicular to the triangle. Many molecules will likewise try to
arrange themselves in triangles which will join to a planar lattice. The
attraction of molecules will draw the molecules closer together to a spacing
of r = 2.13.... The attraction at long distance is too weak to destabilize
this- configuration.

At zero temperature the molecules will fall into the low-energy two-
dimensional lattice. If there is a large but finite number of molecules, they
will almost certainly arrange themselves on the surface of a polyhedral
structure which would appear like a frozen crystalline bubble. We are more
interested in what will happen at nonzero temperature. It is impossible to be
certain of the behavior without detailed analysis or a numerical simulation,
but for the purposes of this example it is enough to conjecture.

At low temperatures the bubble will start to melt and it is easy to imagine
that it will start to deform in shape. It is likely that there will be a low
temperature at which there is a phase transition. Above this temperature the
molecules will no longer stay in the lattice formation, but will be able to
flow around the bubble. This melting phase transition can be compared to a
model of space-time as a critical solid (Orland, 1993). It will be possible for
the bubble to change topology by splitting or forming holes. At a higher
temperature the bubble must eventually evaporate to form a gas with no
apparent topological form.

The conjecture, therefore, is that the bubble model has three phases as
temperature changes, a solid phase, a liquid phase, and a gas phase. The
interpretation in terms of event-symmetric space-time is that the liquid bubble
phase is analogous to two-dimensional quantum gravity in its Riemannian
sector. At high temperatures space-time evaporates into a gas of events. In
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the gas phase the event-symmetric nature of space-time is evident, but time
and space as we know them have no meaning. The dimension of space-time
has changed at the phase transition from two to three.

In the liquid phase space-time appears to have recognizable properties
such as curvature and its event-symmetric nature is no longer evident. We
might say that the symmetry of event-symmetric space-time has been sponta-
neously broken leaving diffeomorphism invariance as a residual symmetry,
but some caution is needed. There is no apparent order parameter which
would enable us to distinguish qualitatively between the liquid and gas phases.
Furthermore, the bubbles can change topology, so we cannot identify the
diffeomorphism group of one specific manifold as the residual symmetry.
The model actually has a more general phase diagram in which density is a
parameter as well as temperature. The density can be controlled by placing
the molecules in a finite-sized box. It is well known that in the phase diagram
of water it is possible to go from the gas phase to the liquid phase without
passing through a phase transition if a high pressure is applied. The same
thing may happen with the bubble model.

In view of this it is preferable to say that event-symmetry is hidden rather
than broken. It is worth recalling that in general relativity diffeomorphism
invariance is also hidden without being broken. There is no evidence of
space-time curvature at human distance scales and before the theory of general
relativity it was not at all obvious that physics was invariant under general
changes of coordinate system beyond the Poincaré transformations. Similarly
I propose that physics is invariant under permutations of space-time events
even though it does not appear to be the case.

The physical interpretation of the gas phase is spectacular. Space-time
itself may evaporate at very high temperature or density, with changes of
space-time dimension or possibly loss of all concept of dimension. If the
principle of event-symmetric space-time holds, then this must be the fate of
matter when it is compressed at the singularity of a black hole. A similar
description of the initial state of the universe may be possible.

It is probable that both the bubble model and real physics have a richer
phase diagram in the high-density and high-temperature corner than that
described here.

5. TOPOLOGY AND RANDOM GRAPHS

The molecular models of the previous section require an external space
in which to embed bubbles representing space-time. One of the strengths of the
theory of general relativity is that it formulates curved space-time intrinsically
without the need to refer to any external space. Most of the event-symmetric
models are also intrinsic in nature, but the lack of an external space-time
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makes it more difficult to see how a finite-dimensional space-time could
arise through a mechanism of symmetry hiding.

The simplest type of model for which this might be possible are random
graphs in which N nodes, or space-time events, are randomly pairwise con-
nected by £N(N — 1) links. Each graph is defined by link variables [, a <
b, which are conventionally give the value 1 if the nodes a and b are linked
and 0 otherwise. Such systems have occasionally been studied as pregeometric
models of space-time (Dadic and Pisk, 1979; Antonsen, 1994; Requardt,
1995).

An event-symmetric action (or energy) for a random graph is a function
of the graph which is invariant under permutations of the nodes. For example,
actions defined as functions of the total number of links L and the total
number of triangles T in the graph would be event-symmetric. The partition
function might be defined as follows:

L= 1,

a<b

T= E lablbclar

a<b<c
E=T-—alL

Z = E e BE
{lup}

1t is interesting to see if we can define dimensionality on a random graph.
For a given node we can define a function L(s), the number of nodes which
can be reached by taking at most s steps along links. If L(s) obeys a power
law on an infinite graph for all nodes,

i(s) — 5P as § o™

then the graph has dimension D. There are other ways to define dimensionality,
including at least one which works for finite graphs (Evako, 1994).

For the example partition function above we might hope that there is a
phase in which the expectation value of dimension takes some interesting
value like 3 or 4. The action favors triangles in the graph, while disfavoring
links. If the balance between the two were to favor structures of low dimen-
sion, then we would have a similar mechanism of space-time formation and
event-symmetry hiding as we did in the soap-film model, but in this case
there would be no artificial extrinsic space in which it was embedded.

In fact it seems to be quite difficult to construct random graph models
which dynamically generate space-time in a fashion similar to the soap-film
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model. There is at least one model which manages to easily produce a one-
dimensional space-time. The action is defined as

vu:Elab-*-Elba

b>a b<a

il

E= (V,—2)

a

V, is the valence of event a and the energy function will be minimized when
there are exactly two links connected at each node. This will obviously result
in linear structures at low temperatures.

Random graph models can be studied in detail either analytically using
such methods as mean-field theory, or numerically using Monte Carlo algo-
rithms. Through careful analysis, it may be possible to contrive an action
which generates manifolds of two, three, or four dimensions. Here I will
choose to skip past those avenues, which are likely to be dead ends, and
follow another which seems to lead to better things.

The concept of random graph can be extended by introducing higher
dimensional variables. A variable similar to the link variable but with three
event indices, t,,., a < b < ¢, could indicate the triple connection of the
vertices of a triangle if its value is one and the absence of a connection if
its value is zero. It is convenient to extend the array of values using antisymme-
try and allow its elements to take on values —1, 0, or 1,

Labe = lpae = “lack

With these variables it is possible to construct actions which force the triangles
to join together forming two-dimensional surfaces at low temperature just as
it is possible to form one-dimensional structures with random graphs. For
example, if

Lab = E Lape

E, = E L3,
ab

EZ = E tzzlbc

abe

The term E, will be minimized when an equal number of positive and negative
variables meet at each edge. This corresponds to an orientated triangulated
surface which is allowed to cross itself. Other terms such as E, can be
included in the action to control the area of the surface.

In this way it is possible to define systems which are event-symmetric
but which also approximate dynamical triangulations of surfaces as used with
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considerable success in numerical studies of two-dimensional Riemannian
quantum gravity (Boulatov et al., 1986). An important aspect of such a system
is that it automatically includes a sum over different surface topologies.
Obviously the principle can be extended to variables of dimension higher
than two, by straightforward generalization to antisymmetric forms with more
indices corresponding to tetrahedrons and higher order simplices in the graph.

There are two important lessons to be learnt here. The first is that higher
dimensional variables are likely to give more interesting models than those
which just use site and link variables. The second is that systems incorporating
a suitably weighted sum over topologies can be considered event-symmetric.
As a topic for future research it would be worthwhile to consider what
constraints event-symmetry imposes on the weightings in such a sum.

One displeasing aspect of both the random graph models and the molecu-
lar models is that the number of dimensions of space-time which they form
is put in artificially. Ideally we would like to see the number of dimensions
arise as a purely dynamical result. Perhaps the number of dimensions should
be able to change through phase transitions. This suggests we should consider
models with a mixture of variables of different dimensions. An elegant
model might include the link and triangle variables defined above along with
variables corresponding to simplices of all other possible dimensions,

8 Vo lab» Laber + - -

If each variable is antisymmetric in all indices and there are N events, then
the sequence will stop with a variable of N indices. I will not endeavor to
consider what might be suitable terms to use in an action with such variables
since new principles would be needed to find them. At this point [ just want
to note the fact that the total number of variables is 2V. This is a huge number
in comparison to the event-symmetric Ising model, which has N variables
and 2V states.

6. GAUGE SYMMETRY AND MATRIX MODELS

The random graph models and their generalizations use variables which
can take on one of a number of discrete values. Such models allow us to
incorporate event-symmetric space-time which we propose as an extension
of the diffeomorphism invariance of general relativity. In particle physics we
are familiar with other symmetries represented by continuous Lie groups. It
is conceivable that such symmetries could emerge in a discrete model in
some limit, but the philosophy behind event-symmetric space-time dictates
that symmetries should appear exactly in the most fundamental formulation.
Furthermore, it would be pleasing if the space-time symmetries could be
unified with the internal gauge symmetries of particle physics.
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For this reason I prefer to consider models with continuous rather than
discrete variables. We might also remark that if fermions and supersymmetry
are to be included, we will also have to permit anticommuting Grassmann
variables. While the discrete-variable models have the character of mathemati-
cal logic, graph theory, and combinatorics, models with continuous variables
will naturally have the character of algebraic mathematics.

Just as almost any physical continuum model can be discretized to
produce a lattice theory, it is also possible to produce event-symmetric models
corresponding to scalar field theories and gauge theories. The Wilson formula-
tion of lattice gauge theory (Wilson, 1974) can be immediately given an
event-symmetric counterpart in which the cubic lattice is replaced with a
graph of N events in which each one is linked to each other and a matrix
group variable is assigned to each link. Gauge-invariant actions can be defined
in terms of the sum over the trace of products taken around each triangle in
the graph.

While such models may be of some interest in other contexts (Rossi
and Tan, 1995), they fail to satisfy our needs here because, first, there is no
mechanism which allows the links to connect to form different topologies,
and second, the symmetric group is not unified with the gauge group. The
first defect may be remedied by combining a random graph model with a
gauge model to form a kind of gauge glass (Bennet et al., 1987), but to cure
the second we must go further.

Consider event-symmetric models in which we place real-valued field
variables A,;, on links joining all pairs of events (a, ). Such models are
analogues of the random graph models with the discrete variables replaced
by continuous ones. A suitable action must be a real scalar function of these
variables which is invariant under exchange of any two events.

The link variables A,, can be regarded as the elements of a square matrix
A. If the direction of the links is irrelevant, then the matrix can be conveniently
taken to be either symmetric or antisymmetric. If there are no self-links, the
diagonal terms are zero, so it is natural to make the matrix antisymmetric,

Ay = —Apg

A possible four-link loop action is

§=B 2 AppApcAcaAia + m 2 A%

abed ab
= B Tr(AY) + m Tr(A?)
This action is invariant not only under the symmetric group acting on events,
but also the orthogonal group acting as similarity transformations on the

matrix. The symmetric group S(N) is incorporated as a subgroup of O(N)
represented by matrices with a single one in each row or column and all
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other elements zero, in such a way that the matrix permutes the elements of
any vector it multiplies.

This is an appealing scheme since it naturally unifies the S(¥) symmetry,
which we regard as an extension of diffeomorphism invariance, with gauge
symmetries. If the symmetry broke in some miraculous fashion, then it is
conceivable that the residual symmetry could describe quantized gauge fields
on a quantized geometry.

Consider, for example, a discrete gauge SO(10) symmetry on a four-
dimensional periodic hypercubic lattice of L = M* points. The full lattice
gauge symmetry group Lar(SO(10), M) is generated by the gauge group
SO(10)* and the lattice translation and rotation operators. A matrix representa-
tion of this group in 10L X 10L orthogonal matrices can be constructed from
the action of the group on a ten-component scalar field situated on lattice
points. The lattice group is therefore isomorphic to a subgroup of an orthogo-
nal group.

Lat(SO(10), M) C O(10L)

We can imagine a mechanism by which the O(10L) symmetry of a matrix
model broke to leave a residual Lat(SO(10), M) symmetry. It seems highly
unlikely, however, that such an exact form of spontaneous symmetry breaking
could arise naturally.

Random matrix models have been extensively studied in the context
where N is interpreted as the number of colors or flavors. The event-symmetric
paradigm suggests an alternative interpretation in which N is the number of
space-time events times the number of colors. This interpretation has been
considered before (Kaplunovsky and Weinstein, 1985).

This suggestion for unification of space-time and internal gauge symme-
try might be compared with the similar achievement of Kaluza—Klein theories
where space-time is extended to have more dimensions and the symmetry is
broken by compactification of one or more of the dimensions. With matrix
models the symmetry is much larger and could be compared with a Kaluza-
Klein theory which had an extra dimension for each field variable (Kaneko
and Sugawara, 1983).

An interesting result for matrix models which is responsible for them
attracting so much attention is that the perturbation theory of a matrix model
in a large-N double-scaling limit is equivalent to two-dimensional gravity or
a ¢ = 0 string theory ('t Hooft, 1974; Kazakov, 1989; Fukuma er al., 1994).

We have discussed matrix models with an O(N) symmetry, but models
based on Hermitian matrices and having unitary U(N) symmetry are equally
interesting, as are models with invariance under the symplectic groups Sp(N).
It is just as easy to construct supersymmetric matrix models using the familiar
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families of supersymmetry matrix groups U(L!K) and OSp(L|K) (Gilbert
and Perry, 1991; Alvarez-Gaume and Manes, 1991; Yost, 1992).
As an example we might use super-Hermitian matrices which take a

block form as follows:
A B
5= (z‘B’ C)

where A is a Hermitian K X K matrix of commuting variables, B is a K X
L matrix of anticommuting variables, and C is a Hermitian L X L matrix of
commuting variables. The supertrace is defined as

s Tr(S) = Tr(A) — Tr(O)

Actions defined with terms expressed as the supertrace of powers of the
supermatrices are invariant under a U(K|L) supersymmetry. This can be
interpreted as an event-symmetric model with two types of event since the
supergroup has a subgroup isomorphic to S(K) ® S(L).

7. LOCALITY AND TENSOR MODELS

Just as random graph models can be generalized to models with higher
dimensional variables, matrix models can likewise be generalized to tensor
models. The action can be a function of any set of scalars derived from the
tensors by contraction over indices, with the indices ranging over space-time
events. Such models have the same (V) symmetry as matrix models.

In tensor models it is often useful to associate tensors which have certain
symmetry constraints with geometric objects having the same symmetry in
such a way that the indices correspond to vertices of the object. For example,
a rank 3 tensor which is symmetric under cyclic permutations of indices,

Tabc = TbL‘a

can be associated with a triangle joining the three vertices a, b, and c. If, in
addition, the tensor is made fully antisymmetric, then degenerate triangles
with two or more vertices at the same event are eliminated and the sign
change is useful to indicate orientation reversal of the triangle. Often models
of interest use antisymmetric rank-d tensors which can be associated with a
system of orientable d-simplices.

We should look for a tensor model with a symmetry-hiding mechanism
such that the dynamics separates some events which can then be regarded
as being at far distances on a manifold, while others remain close to each
other. In other words, we need to generate local interaction. Event-symmetric
space-time seems to be contrary to locality, but happily there are principles
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of locality which can be invoked independently of any event-symmetry-
hiding mechanism.

In each of the models we have looked at there are field variables which
have an association with one or more events. In matrix models the matrix
element A, is associated with two events indexed by a and b. They represent
an amplitude for the connection of those two events as linked neighbors in
space-time. In tensor models a tensor of rank r is likewise associated with
r events. When symmetry hiding occurs we expect the events to somehow
spread themselves over a manifold. A field variable associated with events
which are not near neighbors should be physically insignificant; this will
usually mean that it is very small. Field variables which are associated with
a local cluster of events can be large and would be significant in a continuum
limit. Two such variables which are localized around different parts of the
manifold should not be strongly correlated. They must therefore not appear
in the same interaction term of the action unless multiplied by some small
field variable.

This heuristic picture leads to a definition of locality in which interaction
terms in the action are excluded if they factor into the product of two parts
which do not share events. For example, in a two-matrix model with matrices
A and B the action could contain terms such as Tr(ABAB) but not Tr(AB)?
or Tr(A)Tr(B).

More precisely, we can define an interaction graph corresponding to
any interaction term. The graph would have a node for each component
variable in the term. Two nodes are then linked if the variables are associated
with at least one event in common.

We then say that the model satisfies the weak locality principle if all
interaction graphs are connected. We will also say that it satisfies the strong
locality principle if every pair of nodes is linked in all interaction graphs,
i.e., they are triangles, tetrahedrons, or higher dimensional simplices.

As an example, a matrix model with terms given by the traces of powers
of the matrix

I, = Tr(A")

is weakly local because the interaction graphs are at least n-sided polygons.
If the model includes only terms up to [5, then it is strongly local.

It is reasonable to expect that physical event-symmetric field theories
would have to be at least weakly local since otherwise nonlocal interactions
would persist after a symmetry-hiding mechanism has taken effect. There
seems to be no special reason to demand that a theory should be strongly
local, but it is notable that this condition often reduces the number of possible
interaction terms from infinity down to a few without seeming to exclude
the most interesting models.
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There is one particular form of tensor model which deserves a brief
mention here. It is defined with simplex variables such as the antisymmetric
rank 3 tensor T, associated with triangles. We define an action with terms
whose connectivity represents a simplex of one higher dimension, e.g.,

S= Y TuwcTuteToaqToes
ab,cdef

Just as the perturbation theory of a matrix model describes randomly triangu-
lated surfaces, the perturbation of these tensor models defines random simpli-
cial models of higher dimensional surfaces (Ambjorn et al., 1991; Sasakura,
1991). These tensor models do not exhibit the same universality properties
which make the matrix models so powerful. This fault has been corrected
by Boulatov, who replaces tensors with multivariate functions on groups (or
quantum groups) and defines an action which generates three-dimensional
topological lattice field theory (Boulatov, 1992).

8. PARTICLE MODELS AND CLIFFORD ALGEBRAS

We have seen how antisymmetric tensor forms can be associated with
simplices in event-symmetric space-time and how they might interact together
to form manifolds. We will now explore the possibility of a model which
includes such variables on simplices of all possible dimension, i.e., the model
is defined by a sequence of antisymmetric forms,

§, Ea’ galn Eabca o

Since there are only a finite number N of events, the family will end with a
rank N tensor having only one independent component.

There are many actions which could be constructed from these tensors
if we just require the O(N) symmetry. Such models have a huge number of
degrees of freedom, one for each possible simplex with vertices on space-
time events. Perhaps we could impose a much larger symmetry so as to
reduce the number of possible models and at the same time the effective
number of degrees of freedom.

A natural way forward is to interpret the family of antisymmetric forms
as the components of either an exterior algebra or a Clifford algebra. Here
we choose the latter option. A set of gamma operators form the generators
of the algebra modulo the usual anticommutator relations.

Yoo a=1,...,N
['Ym Yb]+ = 2Bab

It follows that the algebra has dimension 2" and an element can be written

E =§+E§aYa+2b§abY(3Yb+ ot
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A Clifford algebra is an associative algebra with unit and it has a Z, grading
given by the parity of the number of gamma operators in a product. The
graded commutator is therefore a product for a Lie superalgebra. This super-
symmetry is much larger than the O(N) symmetry of the general tensor model
and from now on we will impose it as a symmetry of our models. It is well
known that the second-order operators <.y, generate the orthogonal Lie
algebra, so event-symmetry is contained within this algebra.

Clifford algebras play several useful roles in particle physics. For exam-
ple, they are of crucial importance in construction of spinors and supersymme-
try. These points in themselves are sufficient to justify their use here. However,
there is a third role played by Clifford algebras which may be even more
significant. The single gamma matrices together with the unit generate a Lie
superalgebra which is known as a Heisenberg algebra. If N is even, the
operators can be paired to form a system of N/2 fermionic creation and
annihilation operators,

b, = %('Yz:’-l + i)
b = %('Yzi—l = iYz)

From this we deduce that the Clifford algebra is isomorphic to the algebra
of fermionic operators and is effectively a Fock space for a species of identical
fermions and their antiparticles. The importance of this is that it links the
event-symmetry of space-time to the symmetry of identical particle exchange
and suggests a realization of Mach'’s claim that space-time is generated by
interactions of matter.

To construct an event-symmetric model we treat the components of the
algebra as field variables. Because of the supersymmetry it is necessary to
take the odd-rank tensors as anticommuting Grassmann variables. We must
define an action which is an invariant of the supersymmetry. The highest
rank operator of the algebra is usually written

Yn+er = ]—I Ya
which has a pseudoscalar component £*. We discover that the linear function
I, mapping the algebra onto this component is an invariant,
L(E)=¢&=I(E AD=0
An infinite sequence of invariants can be generated by applying this function
to powers,
L(E) = L(E"

If these are to be suitable terms in an action functional, then N must be even,
otherwise the invariants are anticommuting variables. Examining the form
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of these invariants reveals a dramatic locality problem. Whereas we wished
all terms to be formed from local contractions over indices, we find that each
term has products of tensor components which include every index exactly
once. This problem is resolved by observing that a field variable which can
be associated with every event except a small set can equally well be associ-
ated with the small set through the Hodge star duality transformation

= =
R

The invariants can now be written as expressions combining the components
and their duals which satisfy our ideas of locality.

Having constructed such a satisfying model which seems to unify space-
time and matter, we might well feel encouraged to study its dynamical
behavior with some sense of optimism. However, it is well known that the
gamma matrices which generate the Clifford algebra have a representation
in matrices of size D X D, where

D = N2

Because of the Grassmann variables, these can be taken as supermatrices.
Since the dimension of the algebra is the same as the dimension of the
matrices as a vector space, it follows that there is an isomorphism between
the Clifford algebra and the algebra of supermatrices over complex numbers.
The invariants we have used are merely the trace of these matrices to the
nth power and it follows that the model we have described is mathematically
equivalent to a supermatrix model. Such models are not likely to be rich
enough to provide a complete description of physics.

Despite this, the model has interesting properties and we will go on to
find that modifications to the model can make it more promising. It is also
worth noting the possibility of relationships with other applications of Clifford
algebras to models of space-time physics (Finkelstein, 1982; Smith, 1994).

9. EVENT-SYMMETRIC STRING THEORY

Despite the enormous number of papers written on superstring theory
and the rich mathematics discovered in the course of that research, physicists
still appear to be far from understanding its origins. It is generally believed
that string theory has a huge hidden symmetry which is restored at very high
energies (Gross, 1988). If the nature of that symmetry could be understood,
then it might be possible to construct a fundamental formulation of string
theory which would allow its nonperturbative phenomenology to be studied.

A result of great significance here is that in string theory it is possible
to make smooth transitions between topologically distinct space-time back-
grounds (Aspinwall et al., 1994). As I have already argued, the combined
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requirements of space-time symmetry and topology change seem to force us
to accept the principle of event-symmetric space-time.

This is sufficient justification to seek an event-symmetric model of string
field theory. That is not an easy task since there is no completely satisfactory
formulation of continuum string theory which might be discretized in some
event-symmetric fashion. One clue must be matrix models which are equiva-
lent to ¢ = O string theories and which we can interpret as event-symmetric.
We should also take into account the Clifford algebra model which we saw
as a model of fermions but which also included supersymmetry.

If we could find a suitable description of string symmetry, then the job
would be at least half complete. For mathematicians, classifying symmetries
has been a priority problem throughout the 20th century. Most promising for
our purposes must be the various forms of Kac—Moody algebras and quantum
groups which are related to conformal field theory (see, e.g., Pressley and
Segal, 1988; Fuchs, 1992). Kaku tried to formulate symmetry for string theory
in terms of Lie algebras described on topological strings (Kaku, 1988, 1990).
Other new forms of symmetry have been found in string theory such as W.-
algebras (e.g., Shen, 1992; Bouwknegt and Schoutens, 1993) and it is known
that string theory compacted onto a 26-dimensional torus possesses a symme-
try known as the Fake Monster Lie algebra (see, e.g., Gebert, 1993). Despite
all these discoveries, there are large gaps in the understanding of infinite-
dimensional symmetry algebras and nothing is known which can include all
the supposed symmetries of string theory while at the same time unifying
space-time symmetries with internal gauge symmetries and explaining its
remarkable dualities (e.g., Hull and Townsend, 1995).

In an event-symmetric space-time a string is most easily represented by
a loop connecting a cycle of space-time events and is therefore an object
made of discrete points. This may seem unnatural since string theory is
normally regarded as a theory of continuous strings. However, it is possible
that strings are topological in nature and could be exactly described as discrete
strings with a finite spacing between events (Klebanov and Susskind, 1988;
Thorn, 1991; Kostov, 1995). The topological form will most likely become
apparent through a g-deformation in which the partons of the discrete strings
take on fractional statistics.

In a number of preprints (Gibbs, 1994b,c, 1995a) I have tried to construct
Lie algebras based on such discrete loops in analogy with Kaku’s string
groups. Although this work produced many positive results, it turned out to
be flawed since the Lie superalgebras I constructed for closed loops do not
satisfy the graded Jacobi identity in all cases (Borcherds, 1995). The result
of correcting the anomaly is a tidier formulation which I believe has much
more promise for the possibility of generalization and deformation. It will
be presented in its most basic form here for closed strings.
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Let E be a set of N space-time events and let V = span(E) be the N-
dimensional vector space spanned by those events. Then define T = Tensor(V)
to be the free associative algebra with unit generated over V. The components
of T form an infinite family of tensors over V with one representative of
each rank,

(D = {"Pv Pas Pabs Pabes - - }
O'D? = {0'¢% ¢'92 + @l ¢'92, + 9Lo} + Qle?, .. )

The basis of this algebra already has a geometric interpretation as open
strings passing through a sequence of events with arbitrary finite length.
Multiplication of these strings consists merely in joining the end of the first
to the start of the second. We can denote this as follows:

®=¢+ ) qa+ Eb @b + D) @aabc + ...
a a,

ab,c

We now construct a new algebra by adding an extra connectivity structure
to each string consisting of arrows joining events. There must be exactly one
arrow going into each string and one leading out. This structure defines a
permutation of the string events so there are exactly K! ways of adding such
a structure to a string of length K,

10 ]

a b ¢c d e f
T ] LT T

L 7T

These objects now form the basis of a new algebra with associative multiplica-
tion consisting of joining the strings together as before, while preserving the
connections. Finally the algebra is reduced modulo commutation relations
between events in strings which are defined schematically as follows:
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These are partial relations which can be embedded into complete relations.
Closed loops which include no events are identified with unity. For example,
the lines can be joined to give

ry ri

This example shows the cyclic relation on a loop of two events. The arrows
can be joined differently to give another relation,

which is the anticommutation relation for loops of single events.

By applying these relations repeatedly, it is possible to reorder the events
in any string so that the strings are separated into products of ordered cycles.
Therefore we can define a more convenient notation in which an ordered
cycle is indicated as follows:

(ab...c)=a>b->...>c

T |

We can generate cyclic relations for loops of any length such as
(ab) = —(ba) + 28,
(abc) = (cab) + 28,.(a) — 28,.(b)
(abed) = —(dabc) + 28, {ab) — 28, 4a)(c) + 28,4(bc)
and graded commutation relations such as
(a)(b) + (b)(a) = 25,
(ab)(c) — (c)(ab) = 28y(a) — 28,(b)

Clearly the algebra has a Z, grading given by the parity of the length of
string and it is therefore possible to construct an infinite-dimensional Lie
superalgebra using the graded commutator.
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The length-one cycles are the generators of a Clifford algebra and there
is also a homomorphism from the full algebra onto a Clifford algebra defined
by removing the loop structure from the strings.

The physical interpretation is that this algebra describes the symmetry
of a discrete superstring formed from loops of fermionic partons in event-
symmetric space-time. Mathematically it appears to be an entirely new type
of symmetry which is likely to have generalizations and deformations that
could be of some significance.

10. CONCLUSIONS

I have introduced the principle of event-symmetric space-time and argued
for its validity despite its unlikely-seeming consequences. In event-symmetric
models the nature of space-time, including its topological structure, is dynami-
cally determined. A physical consequence is that at very high temperatures
space-time may change dimension or even evaporate, losing all sense of
causality and locality.

In a series of toy models 1 have tried to gain a feel for what a correct
event-symmetric theory should look like and behave like. This has led to
algebraic models with high degrees of symmetry. The most advanced models
are event-symmetric discrete string theories.

To finish the work on event-symmetric string theory it will probably be
necessary to deform the string algebras described here. It is probably necessary
to model a string as a loop of particles with fractional statistics rather than
fermions. Such a deformation might be possible if the loops are replaced
with knots.

To complete the theory it will also be necessary to define the dynamics
of the system and discover a correspondence with recognized space-time
physics. There is still a long way to go.
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